Biological network comparison using graphlet degree distribution
نویسندگان
چکیده
منابع مشابه
Biological network comparison using graphlet degree distribution
MOTIVATION Analogous to biological sequence comparison, comparing cellular networks is an important problem that could provide insight into biological understanding and therapeutics. For technical reasons, comparing large networks is computationally infeasible, and thus heuristics, such as the degree distribution, clustering coefficient, diameter, and relative graphlet frequency distribution ha...
متن کاملUncovering Biological Network Function via Graphlet Degree Signatures
MOTIVATION Proteins are essential macromolecules of life and thus understanding their function is of great importance. The number of functionally unclassified proteins is large even for simple and well studied organisms such as baker's yeast. Methods for determining protein function have shifted their focus from targeting specific proteins based solely on sequence homology to analyses of the en...
متن کاملTemporal Network Comparison using Graphlet-orbit Transitions
Networks are widely used to model real-world systems and uncover their topological features. Network properties such as the degree distribution and shortest path length have been computed in numerous realworld networks, and most of them have been shown to be both scale-free and small-world networks. Graphlets and network motifs are subgraph patterns that capture richer structural information th...
متن کاملGraphlet-based measures are suitable for biological network comparison
MOTIVATION Large amounts of biological network data exist for many species. Analogous to sequence comparison, network comparison aims to provide biological insight. Graphlet-based methods are proving to be useful in this respect. Recently some doubt has arisen concerning the applicability of graphlet-based measures to low edge density networks-in particular that the methods are 'unstable'-and f...
متن کاملOptimal Network Alignment with Graphlet Degree Vectors
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2010
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btq091